Knocking Down the Expression of GMPase Gene OsVTC1-1 Decreases Salt Tolerance of Rice at Seedling and Reproductive Stages
نویسندگان
چکیده
Salinity is a severe environmental stress that greatly impairs production of crops worldwide. Previous studies have shown that GMPase plays an important role in tolerance of plants to salt stress at vegetative stage. However, the function of GMPase in plant responses to salt stress at reproductive stage remains unclear. Studies have shown that heterologous expression of rice GMPase OsVTC1-1 enhanced salt tolerance of tobacco seedlings, but the native role of OsVTC1-1 in salt stress tolerance of rice is unknown. To illustrate the native function of GMPase in response of rice to salt stress, OsVTC1-1 expression was suppressed using RNAi-mediated gene silencing. Suppressing OsVTC1-1 expression obviously decreased salt tolerance of rice varieties at vegetative stage. Intriguingly, grain yield of OsVTC1-1 RNAi rice was also significantly reduced under salt stress, indicating that OsVTC1-1 plays an important role in salt tolerance of rice at both seedling and reproductive stages. OsVTC1-1 RNAi rice accumulated more ROS under salt stress, and supplying exogenous ascorbic acid restored salt tolerance of OsVTC1-1 RNAi lines, suggesting that OsVTC1-1 is involved in salt tolerance of rice through the biosynthesis regulation of ascorbic acid. Altogether, results of present study showed that rice GMPase gene OsVTC1-1 plays a critical role in salt tolerance of rice at both vegetative and reproductive stages through AsA scavenging of excess ROS.
منابع مشابه
Evaluation of salinity tolerance in rice genotypes
Salinity is considered as one of important physical factors influencing rice (Oryza sativa L.) production. Knowledge of salinity effects on rice seedling growth and yieldcomponents would improve management practices in fields andincrease our understanding of salt tolerance mechanisms in rice. This study was designed to assess the role of Saltol QTL in regards to effects of salinity on plant gro...
متن کاملComparative Metabolite Profiling of Two Rice Genotypes with Contrasting Salt Stress Tolerance at the Seedling Stage
BACKGROUND Rice is sensitive to salt stress, especially at the seedling stage, with rice varieties differing remarkably in salt tolerance (ST). To understand the physiological mechanisms of ST, we investigated salt stress responses at the metabolite level. METHODS Gas chromatography-mass spectrometry was used to profile metabolite changes in the salt-tolerant line FL478 and the sensitive vari...
متن کاملSalt Tolerance in Rice Cultivars and Changes in Sodium and Potassium Ions
Salinity is an environmental stress that limits growth and development in plants. Due to high salinity in Khuzestan soils it is necessary to identify cultivars with appropriate yield that are compatible with Khuzestan conditions. This experiment was done to evaluate three rice cultivars for salinity tolerance at seedling stage by measuring the absorption of sodium and potassium ions and the rat...
متن کاملاثر سطوح مختلف شوری کلرید سدیم بر جوانه زنی و رشد گیاهچه ارقام گلرنگ (Cartamus tinctorius L.)
Soil salinity is an increasing environmental stress on crops in most areas of Iran since farmers use underground saline water for irrigation. In order to investigate the effects of salt stress on germination and seedling growth of safflower (Carthamus tinctorius L.), an experiment was conducted at two stages (germination seedling growth), using four levels of NaCl salinity (0, 5, 10, 15 ds/m), ...
متن کاملاثر سطوح مختلف شوری کلرید سدیم بر جوانه زنی و رشد گیاهچه ارقام گلرنگ (Cartamus tinctorius L.)
Soil salinity is an increasing environmental stress on crops in most areas of Iran since farmers use underground saline water for irrigation. In order to investigate the effects of salt stress on germination and seedling growth of safflower (Carthamus tinctorius L.), an experiment was conducted at two stages (germination seedling growth), using four levels of NaCl salinity (0, 5, 10, 15 ds/m), ...
متن کامل